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Abstract 
Objective: In this work, we aimed to demonstrate how to utilize the lab test results and other 
clinical information to support precision medicine research and clinical decisions on complex 
diseases, with the support of electronic medical record facilities.  
Materials and Methods: We defined “clinotypes” as clinical information that could be observed 
and measured objectively using biomedical instruments. From well-known ‘omic’ problem 
definitions, we defined problems using clinotype information, including stratifying patients - 
identifying interested sub cohorts for future studies, mining significant associations between 
clinotypes and specific phenotypes-diseases, and discovering potential linkages between clinotype 
and genomic information. We solved these problems by integrating public omic databases and 
applying advanced machine learning and visual analytic techniques on two-year health exam 
records from a large population of healthy southern Chinese individuals (size n=91,354). When 
developing the solution, we carefully addressed the missing information, imbalance and non-
uniformed data annotation issues.  
Results: We organized the techniques and solutions to address the problems and issues above into 
CPA framework (Clinotype Prediction and Association-finding). At the data preprocessing step, 
we handled the missing value issue with predicted accuracy of 0.760. We curated 12,635 clinotype-
gene associations. We found 147 Associations between 147 chronic diseases-phenotype and 
clinotypes, which improved the disease predictive performance to AUC (average) of 0.967. We 
mined 182 significant clinotype-clinotype associations among 69 clinotypes. 
Discussions and conclusions: Our results showed strong potential connectivity between the omics 
information and the clinical lab test information. The results further emphasized the needs to utilize 
and integrate the clinical information, especially the lab test results, in future PheWas and omic 
studies. Furthermore, it showed that the clinotype information could initiate an alternative research 
direction and serve as an independent field of data to support the well-known ‘phenome’ and 
‘genome’ researches. 
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Background 
As electronic health records (EHR) has been increasingly supporting biomedical and 

healthcare service research, utilizing the clinical information, especially the clinical test 
information, to strengthen precision medicine is still an open challenge [1]. Here, we have seen 
many EHR applications in improving precision medicine and quality of care, including: identifying 
disease risk factors [2], molecular biomarkers [3]; identifying high-risk/special-treatment cohorts 
[4, 5]; identifying the comorbidities[6, 7]; detecting drug adverse events and side effects [8]; 
repurposing drugs [9]; and predicting early hospitalizations [10]. However, it is still unclear to 
what extent the findings associate to specific clinical test results, which are among the most 
practical information for the care providers [11]. In addition, whether these associations imply that 
the test results are risk factors or just the reflection of the phenotype is still ambiguous. For 
example, the monocyte count, which is a popular blood test, is the result of the inflammatory 



response in chronic obstructive pulmonary disease and could be as a risk factor leading to 
cardiovascular diseases [12].  

In the other hands, electronic medical data systems and analytical methods, which are the 
essential facilities to tackle the challenge above, have been gradually matured. At the data system 
component, elements in EHR data, including the medical test information, unified medical 
language system [13], and data integration [14] have been standardized [15-17] and well-supported 
to EHR extraction and refinement. In addition, from natural language processing tools [18], 
manual curation and crowd-sourcing efforts, there have been many data sources [19-21] potentially 
allows linking the clinical test results, the phenotypic/clinical outcomes, and genotype information. 
At the analytical component, custom statistical data mining and machine learning techniques have 
been applied to EHR data to cope with challenges in understanding biomedical and healthcare big 
data. To determine disease risks, one can use a popular statistical analysis technique—
disproportionality analysis [22]. To predict patient survival and track disease progression using 
clinical biomarkers [23, 24], one can perform temporal data analysis such as regression in time 
series analysis [25] and Cox regression model [26]. To perform classifications based on 
multivariate models [27], one can build statistical learning models such as decision tree [28], 
artificial neural network [29], hidden Markov model, and support vector machine [30, 31]. In 
addition, set-based statistical analysis methods, such as chi-square and Fisher’s exact test are also 
useful in evaluating the significance of the findings [32]. There have been several examples of 
informatics systems allowing utilization of medical test and other clinical information, such as 
eMERGE [33] and I2B2 [34], where the integration of test results and genotype information would 
help in specifying the cohorts of interest and customized algorithm are developed for disease-
specific problems. 

Given these better facilities, why EHR and its rich clinical test information has not been able 
to play a more active role in precision medicine? Among many limitations, [35] highlights the data 
quality issues: “interoperability, poor quality, and accuracy of the collected information”. In other 
words, EHR data have has three specific challenging issues to address. First, EHR data contains 
missing values [36] because of human error or non-response subjects [37]. Second, EHR data is 
naturally imbalanced: class imbalance, for example, the small percentage of ‘abnormality’ events, 
and patient demographic imbalance. Third, EHR data lacks thorough and uniform annotation. 
Usually, the annotation needs to be made patient-specific.  

This work is a pioneering framework in better-utilizing EHR, especially its rich clinical test 
result, to enhance precision medicine, defining new problems and providing solutions in 
biomedicine involving these data. We proposed the concept “clinotype” in response to the call for 
clinical information modeling, especially for querying and analytics over clinical content and 
decision support over clinical content [38]. We define “clinotypes” as clinical information, 
excluding the treatment, that can be observed and measured objectively using biomedical 
instruments. Most of the clinotypes are hospital lab tests. However, we argue that the “clinotype” 
concept and the “hospital lab test” are not entirely the same due to two reasons. First, with the 
development of mobile devices, the patients can self-perform some measurements outside the 
hospital laboratory; therefore, the term “hospital lab test” may not be well-applied in this case. 
Second, hospital lab tests include drug testing (treatment-related); therefore, this type of lab test is 
excluded from “clinotype” definition. In addition, different from “phenotypes” commonly used in 
biomedicine, which is associated to disease morphology developed by healthcare professionals 
[39], clinotypes are qualitative or quantitative measurements that are neutral to expert judgment. 
We tackled the data quality issues by both data quality control and machine learning support. We 



defined three board problems of ‘clinotype’ data analytics: clinotype-clinotype association 
discovery, clinotype-phenotype association discovery and clinotype-genotype relationship 
discovery. We named the framework CPA (Clinotype Prediction and Association-finding). The 
dataset used in this study, provided by the 1st affiliated hospital – Wenzhou Medical University – 
China (acronym: 1AH), contains values of totally 400 clinotypes, with no specification on 
interested cohorts or diseases. This dataset was collected between 2012 and 2014 from 91,354 
patients, which well-represents the Southern Chinese population, mostly from south of Fujian 
province and the entire Zhejiang province with more than 20 million civilians. 

Results 
In this work, we use the following acronyms: 
- SVLR: support vector linear regression 
- PPV: positive predictive value 
- NPV: negative predictive value 
- ACC: accuracy 
- AUC: area under the receiver-operating characteristic curve 
CPA is an integrative machine learning framework, including data preprocessing and clinotype 

analysis as presented in figure 1. From the original data (P0), which consist of 9,283,306 clinotype 
results from 91,354 patients and 400 clinotypes, we filtered insignificant clinotypes and patients 
and normalized the data. In data preprocessing, due to technical limitations in Chinese natural 
language processing, we were unable to include the non-numerical clinotype results. After 
preprocessing, we used P2 data subset and available diagnosis information to solve the clinotypes 
problem: discovering clinotype-phenotype (disease) associations and stratifying the patients' 
clinotype data for interested cohort identification. We curated the existing 'omic' data sources for 
clinotype-genotype information. More technical details and metrics of evaluation could be found 
in the method sections. 
 



 
Figure 1. Flowchart for CPA framework. The rectangle boxes represent clinotype data 

subsets from P0 to Pr/Pt. The dash rectangle boxes represent clinotype problems and 
main results. The rounded rectangle boxes represent external (non-clinotype) data and 

techniques help solving the clinotype problems. 
 

Robust missing value prediction models 
In tackling missing value issue, the prediction performance of SVLR is desirable for predicting 

values of a number of numerical clinotypes. Overall, the weighted prediction accuracy for all 
measurement is 0.760, the weighted average PPV is 0.488, and the weighted average NPV is 0.829. 
This performance is significantly higher than the random prediction, in which, due to the metric 
defined in Table 3 in the method sections, the expected random ACC/PPV/NPV would be 0.33. 
Supplementary Table 1 shows all prediction performance metrics of all clinotypes. There are three 
scenarios for the performance of SVLR on predicting missing clinotypes. First, Blood Platelet 
Hematocrit, Average Erythrocyte Volume, and Lymph Absolute Value show both high (above 0.7) 



PPV and accuracy. Second, Albumin, RBC Volume Distributed SD Value and Neutrophils 
Absolute value show average PPV (from 0.5 to 0.7) and high accuracy. Third, Lipid-related 
measurements, such as LDL-Cholesterol, Apolipoprotein B and Triglycerides achieve moderate 
PPV but moderate or low accuracy (below 0.7), except LDL cholesterol. Most of the clinotype 
NPVs are high, except for lipid-related measurements 

The SVLR may not be very accurate to model clinotypes for old people. In Figure 2, accuracy, 
PPV and NPV of models trained by young-age and middle-age groups are higher than the ones 
trained using old groups. Furthermore, the average NPV and accuracy trained by old-age groups 
are lower than the average NPV and accuracy using the entire dataset. As Supplementary Table 3 
f-g show, old groups have significantly less reporTable predicted clinotypes compare to other 
groups.  
 

 
Figure 2. Performance of SVLR models for predicting missing values: Average ACC, PPV 

and NPV comparison between different groups of patients (defined in Table 2). 
 

The significant disease-phenotype-clinotype associations could potentially 
improve disease identification 

Here, we focused on the phenotype-clinotype associations of five popular chronic diseases: 
chronic gastritis, coronary, cataract, hyperlipidemia, and diabetes. We found 147 significant 
phenotype-clinotype associations (supplemental Table 2). We demonstrated the top 10 significant 
clinotype-phenotype associations, sorted by p-value, in Table 1. Figure 3 shows that the 
classification models built upon these associations (acronym: ASS models) are completely 
superior to the models built without using these associations (non-association, acronym: NON 
models). Briefly, the ASS models only use the clinotypes that have strong associations to the 
diseases; while the NON models do not use these clinotypes. The details on constructing these 
models, from finding clinotype-phenotype associations to classification algorithms (random 
forest) could be found in the method section. In all diseases, the ASS models achieve higher AUC 
and PPV. By average, the ASS models AUC of 0.967 and PPV of 0.923; meanwhile, the NON 
models only achieve AUC of 0.942 and PPV of 0.886.  



Clinotype Disease-phenotype p-value 

Blood Crystallization Diabetes 3.36x10-18 

Blood Crystallization Coronary 1.48x10-17 

Rheumatoid Factor Hypertension 1.78x10-16 

Blood  Crystallization Hyperlipidemia 1.47x10-13 

Rheumatoid Factor Chronic gastritis 4.77x10-12 

Glucose Diabetes 1.71x10-11 

Crystallization Cataract 4.22x10-11 

Rheumatoid Factor Hyperlipidemia 6.47x10-9 

Blood Platelet Hyperlipidemia 6.24x10-7 

Triglycerides Hyperlipidemia 6.61x10-7 

 
Table 1. Top 10 significant clinotype-phenotype association found in P2 dataset 

 

 



 
Figure 3. AUC/PPV Comparison between two types of the disease-specific classification 

model: using (ASS) and not using (NON) only disease-phenotype-clinotype association.   

Cohort identified by stratification of patients’ clinotype reveals potential 
chronic comorbidities 

For 5 subcohorts identified by Plotviz clustering, the ANOVA tests return 67 significant 
clinotypes (Supplementary Table 3) which could be used to annotate each cluster. Information for 
selecting the number of clusters could be found in supplemental material. Interestingly, the unbias 
and domain-knowledge free clustering method (Plotviz) results in patients subgroups who have 
potentially similar disease phenotypes. The top 5 significant clinotypes are Blood Platelet 
Distributed Width (p-value 1.79×10-169), Postprandial 2h Blood Sugar (p-value 3.58×10-133), 
Glucose (p-value 9.69×10-104), Saccharification Blood Protein (p-value 6.01×10-73) and 
Crystallization (p-value 7.92×10-49). These top 5 clinotypes annotate two clusters (Figure 5). Blood 
platelet Distributed Width and Crystallization is higher cluster 3 containing 101 patients. 
Postprandial 2h Blood sugar, Glucose and Saccharification Blood-red Protein specify cluster 1 
containing 843 patients. Supplemental Table 4 summarizes the disease-phenotype annotation for 
each cluster. These annotations could be visualized using with Plotviz 
(http://salsahpc.indiana.edu/plotviz/) visualization and data files in Supplemental File 7. 
 



 
Figure 4. Top 5 clinotypes annotating identified subcohorts. x axis stands for the cluster 

index. y axis stands for the normalized clinotype values 



 
Figure 5. Clustering heatmap with top 5 measurements: Patients are represented by rows. 

The order of columns is Blood platelet Distributed Width, Crystallization, Postprandial 
2h Blood sugar, Glucose, and Saccharification Blood-red Protein 

Discussions 
In this work, CPA’s machine learning technique could successfully predict the missing health 

clinotype values. Accurate missing-value prediction provides qualified information for supporting 
diagnosis and a better understanding of the patient at an individual level. In addition, Plotviz 
clustering technique could reveal patient subgroups who potentially share similar health issues. 
Validation via curation shows potential explanation about significant clinotype-clinotype 
associations at the gene level. This result could be used to suggest new biological research topic 
about the clinotype-genotype associations. 

We also want to clarify the difference of “clinical modeling” concept, which our CPA 
framework aims for, with the “clinical information models” (CIM) defined by Moreno-Conde’s 
group [40].  In [40], CIM is a board concept for structural and semantic artifacts providing multiple 
functionalities: organizing, storing, querying, visualizing, exchanging and analyzing data. In the 
CPA framework, missing value prediction and clinotype-clinotype association discovery could be 
called analyzing data functionalities. In addition, the results from patient clustering and linking 
clinotypes to genomic databases could certainly lead to new clinical trials and research. Therefore, 
CPA could extend the CIM concept by adding the recommendation functionality, which could be 
very helpful for doctor and research users. 
 



There are three main limitations of this research work. The first limitation is that the linear 
prediction models do not work well with patients from old-age groups. Therefore, the nonlinear 
methods are better-recommended to learn the clinotype-clinotypes associations the follow-up 
analysis from the old-age-group data. The second limitation is constructing the semantic structure 
among health clinotype names. Thus, we could not use standard annotation code for diseases, 
symptoms and other phenotypes, such as ICD10 and MeSH term to acquire better curation as in 
[41].  

In addition, to complete the triangle among clinotype, phenotype and genotype, the CPA 
framework should include the following problems. First, mining clinotype-clinotype association 
would complete the clinotype-clinotype edge, which has not been addressed. Machine learning 
techniques could be reapplied in this problem. Second, linking the clinotype-clinotype and 
clinotype-genotype associations to the gene level would provide insights explaining the 
associations above. Here, integrating PheWas with better clinotype-phenotype association (from 
curation and natural language processing) would be a promising solution. We would solve these 
problems in some future work. 

In addition, PPV leaves two issues for open discussion in this work. First, the weak anti-
correlation between prediction accuracy and PPV leaves an issue in sampling the training set. It is 
expected that when we use totally random balance sampling in the training set, the distribution of 
predicted labels in the test set may contain less ‘normal’ label and may increase PPV. However, 
‘normal’ is the major label; therefore, increasing PPV may decrease accuracy. We do not have a 
clear answer whether or not more advanced data sampling approaches in[42] could be a better 
solution due to the missing value. Second, although the average PPV achieved in this work is 
moderate (PPV), we argue that it is a reporTable outcome. In this study, the ‘positive’ class stands 
for abnormal measurement value (either high or low), which is often the minor class in health data. 
In addition, our definition for true positive (see method section of setup metrics for prediction 
performance) only allows the predicted label and the true label as either ‘high’ or ‘low’. In other 
words, if the predicted is ‘low’ but the true label is ‘high’ and vice versa, we still consider this case 
as false positive although both the predicted label and the true label are not ‘normal’. With this 
definition, the expected random PPV is 0.33, much less than the average PPV we achieved. Our 
plausible results in clinotype-clinotype association discovery and patient clustering, which directly 
use clinotype missing value prediction, show that the discovery is still solid with the PPV above. 
However, we believe that the discovery could be improved if we apply other techniques with 
higher PPV. 

Conclusions 
By CPA framework, we showed how utilizing clinical test results information (clinotype) could 

further support precision medicine. The proposed problems and solutions with clinotypes 
demonstrate that clinotype could potentially be an independent area but associating with the well-
known genotype-phenotype association studies. Machine learning techniques play a key role in 
this pioneering work. It could lay out the general ideas from which the future techniques could 
improve the solution for each problem proposed in this work.  



Materials and Methods 
Acquire and preprocess data 

We acquired, preprocessed and organized the dataset according to the workflow in Figure 1 by 
3 steps, which creates 5 data subsets: P0, P1, P2, Pr and Pt. P0 stands for the original dataset after 
removing patients’ identifiable information. P1 stands for subsets of data related to numerical 
clinotype. P2 stands for the normalized dataset from P1. Pr and Pt stand for the training set and the 
test set correspondingly in machine learning. The data preprocessing would tackle the non-uniform 
annotation issues and support machine learning as follow. 

The original P0 subset, acquired directly from the health checkup (which is an independent 
department at 1AH), contains records on 400 health clinotype values of 91,354 patients between 
September 2011 and May 2014. Among 91,354 patients, 712 patients (0.7%) are under 18 years 
old. More information about the selected cohort could be found in Table 1. Since this work focuses 
on health clinotype, we manually translated the clinotype names from Chinese to English. To 
improve the quality of our translation, we queried our translated English name in popular medical 
terminology resources: MedLinePlus (http://www.nlm.nih.gov/medlineplus/), Lab Tests Online 
(https://labtestsonline.org/), PubMed (http://www.ncbi.nlm.nih.gov/pubmed/ for title/abstract) and 
adjusted our translation according to the closest matched terms in these resources. Importantly, for 
each personal clinotype result in P0, the 1AH provided the normal reference ranges, which referred 
to Chinese medical guidance and was the standard requirement at any 1AH medical record. The 
reference ranges are subjected to individuals. For example, the Hematocrit test in P0 has two 
reference ranges: 35-45% for female individuals and 40-50% for male individuals. The normal 
reference ranges allow annotating all clinotype results as ‘high’, ‘normal’ and ‘low’. Therefore, in 
this work, we tackled the annotation issue by applying the domain knowledge and data standard 
from the care provider. 

The P1 subset results from P0 by filtering out low-confidence patient and clinotype 
information. Among 400 clinotypes, 97 clinotypes are numerical. In this work, due to the technical 
limitation in Chinese natural language processing, we did not include the non-numerical test result, 
which often include free text. Three clinotypes: Yeast Culture, Creatinine (Enzymatic) and Thyroid 
Globulin Antibody (ECLIA) are rare (taken by less than 1000 patients, or 1% of the population 
size) and excluded from the study to reduce the noisy effect in statistical machine learning 
methods. Thus, 94 clinotypes remained for further preprocessing and analysis. We also removed 
patients having no numerical clinotypes and 213 pediatric patients (< 0.1%) due to low count. P1 
contains 4,122,917 patients’ health clinotypes entries from 68,419 patients.  

The P2 subset results from P1 by normalizing clinotype results with the z-score formula 

𝑥𝑥𝚤𝚤,𝑛𝑛� =
𝑥𝑥𝑖𝑖,𝑛𝑛 − 𝑥𝑥𝚤𝚤�

𝜎𝜎𝑖𝑖
 (1) 

in which i is the clinotype index, n is the patient index, 𝑥𝑥𝚤𝚤�  is the mean of clinotype i , 𝜎𝜎𝑖𝑖 is the 
standard deviation of clinotype i and 𝑥𝑥𝚤𝚤,𝑛𝑛�  is the normalized value of patient n on clinotype i. The 
mean and standard deviation was calculated only from the training set. We chose z-score 
normalization because it could remove all of the clinotype biases and variances in machine 
learning. In addition, z-score normalization is a linear method, which is suiTable for interpreting 
and validating the results from linear regression later. We scaled the normal range for each 
individual clinotype result using the same mean and standard deviation at (1). 



We setup the training subset Pr and subset Pt for downstream machine learning analysis and 
validation. We selected the date June 30 2013 to separate the dataset. This date divides the P2 set 
into a training set and test set following conventional ratio 3:1 (Figure 1). Pt and Pr allow tackling 
the missing value issues using machine learning, which we would describe later. For missing 
values existing in Pt and Pr, we replaced them with the corresponding predicted values computed 
from the missing value models. The P2, Pt and Pr subsets allow defining and solving the clinotype 
– related problems as shown in Figure 1 pipeline. 

In addition to the P0 dataset, the outpatient department at 1AH provided the diagnostic history, 
identified by Chinese ICD version 10. More information about disease-specific cohort could be 
found in supplemental Table 5.  
 

Age group Gender No. Patient (%) 

Young (18-39) 
 

  

Male 14,594 (21.33) 

 Female 12,596 (18.41) 

Middle (40-59) 
 

  

Male 18,717 (27.36) 

 Female 14,137 (20.66) 

Old (60 and above) 
 

  

Male 5,207 (7.61) 

 Female 3,168 (4.63) 

Table 2. Statistics about the demographic information in the selected cohort. 

Handle the missing value and data imbalance 
Technical solution 

Built upon machine learning techniques, the CPA framework handled the missing value issue 
and partially data imbalance issue in one step. We select the support vector linear regression 
(SVLR) to build models predicting the missing value. Compared to other techniques in handling 
missing data [43, 44], we preferred SVLR because of not only its higher sparsity [45, 46] but also 
its models could be directly applied to discover clinotype-clinotype associations. For each 
clinotype y, the SVLR estimate the missing value using the linear model 𝑦𝑦𝑛𝑛� = 𝐰𝐰𝑇𝑇𝐱𝐱𝑛𝑛 + 𝑏𝑏 if the 
clinotype value of patient n is missing. Here, 𝑦𝑦𝑛𝑛� denotes the estimation for missing value, xn is the 
vector of other (non-missing) clinotype value for patient n, and w denotes the coefficient for these 
non-missing clinotypes. SVLR uses the non-missing y in Pr subset to train the model. Briefly, the 
SVLR setup the solution minimizing: 

1
2

|𝐰𝐰| + 𝐶𝐶�𝜉𝜉𝑛𝑛

𝑁𝑁

𝑛𝑛

 



subject to �𝐰𝐰
𝑇𝑇𝐱𝐱𝑛𝑛 + 𝑏𝑏 ≥ 𝑦𝑦𝑛𝑛 − 𝜀𝜀 − 𝜉𝜉𝑛𝑛

𝐰𝐰𝑇𝑇𝐱𝐱𝑛𝑛 + 𝑏𝑏 ≤ 𝑦𝑦𝑛𝑛 + 𝜀𝜀 + 𝜉𝜉𝑛𝑛
  (2) 

and 𝜉𝜉𝑛𝑛 ≥ 0  ∀𝑛𝑛 
Here, yn denotes the non-missing value for y in training, ε ≥ 0 is the ‘tolerance’, or expected error 
between the predicted and the real yn in regression, and 𝜉𝜉𝑛𝑛 is the slack variable as defined in [45, 
46]. Parameter C and ε decide the trade-off between the smoothness of regression function and 
how tolerance the predicted clinotype value could deviate from the true clinotype value. We 
decided to use C = 1 and ε = 0.001 after testing multiple choices of C = 0.001, 0.01, 0.1, 1, 100, 
1000 and multiple choices of ε = 0.001, ε = 0.01, ε = 0.1 ε = 1. We used ILOG CPLEX Optimizer 
[47] to solve the problem (2). 

To partially tackle the data imbalance issue, in implementation, we applied the under-
resampling method in [48] to select the balanced subset in the training phase. By balancing, we 
mean for each predicted-target clinotype y in (2), the ratio among ‘normal’, ‘high’ and ‘low’ yn 
selected in training is relatively 1:1:1. For each clinotype prediction, we ran resampling, learning 
and predicting 50 times and reported the average for coefficients and predicted value. 
 

Performance metric and validation 
We used the models (2) built upon Pr subset to estimate the non-missing clinotype values in Pt 

set. Since each non-missing clinotype value has a reference range, the real and estimated clinotype 
value could be annotated as either ‘high’, ‘normal’ or ‘low’. Therefore, we have 9 possible 
outcomes as shown in Table 2. 

  Estimated value annotation 

  High Normal Low 

Real value 
annotation 

High TP FN FP 

Normal FP TN FP 

Low FP FN TP 

Table 3. Confusion matrix between the estimated and real clinotype value annotation. TP: 
true positive, TN: true negative, FP: false positive, FN: false negative 

With the emphasize on predicting abnormality, we had the accuracy (ACC) and positive predictive 
value (PPV) metrics as 

ACC =
TP + TN

TP + TN + FP + FN
 

PPV =
TP

TP + FP
   (3) 

 

Curate the clinotype - genotype association  
Since we did not have genetic test information among the study cohort, we used public 

databases PAGER [49, 50] and REACTOME [51, 52] (pathway and metabolism only) to find 
genes associated with the clinotypes. PAGER is a geneset database, which integrates the most 



popular geneset-level databases known today (including MsigDB) and collection of phenotype-
related genes from popular manual curated databases, including OMIM [53, 54], MSigDB and 
GeneSigDB [55]. REACTOME is one of the most well-known curated biological pathway 
databases known today. We removed non-biological words in each clinotype name, such as 
absolute value, percentage, ratio, volume, etc. and convert all names to singular form before 
querying. For example, with clinotypes “Basophils Percentage” and “Monocytes Absolute value”, 
we queried “Basophil” and “Monocyte”. After acquiring the clinotype’s related gene set, we used 
DAVID Gene ID conversion tool [56, 57] to map the names retrieved from REACTOME and 
PAGER to UniProt ID to remove potential alias names and ensure that the genes found were 
reviewed. After querying and filtering, we obtained 12,635 connections between 6145 genes and 
only 61 clinotypes, as showed in supplemental Table 6. 
 

Find disease-phenotype and clinotype associations 
Technical solution 

Using the diagnostic information for the cohort covered in P1 subset, we found the disease-
phenotype and clinotype associations with the help of student t-test [58] as follow. In P1, we select 
patients having less than 5% abnormal clinotype values and no diagnostic history into the control 
set. For each disease, we use the ICD10 diagnostic code to select the ‘disease’ set. Comparing 
between the disease and control sets with t-test, we computed the p-value for each clinotype. The 
clinotypes having significant p-value (less than 0.05) was considered to have significant 
associations with the underlying disease. 

Performance metric and validation 
To validate these associations, we compared the disease-versus-control classification 

performance using two types of model. For the first type of model, noted as ASS (abbreviation of 
association), we only use the disease’s associated tests as features for classification. For the second 
type of model, noted as NON (abbreviation of non-association), we only used the non-associated 
tests as features for classification. We trained the classification models using the Pr set and measure 
the performance on the Pt set, as shown in the above section. We expect that the classification 
metrics: area under the curve (AUC) and accuracy [59] of the ASS models should be higher than 
the ones in the NON model. For training classification models, we applied Random Forest [60] 
implemented in Weka version 3.8 [61], which was significantly successful in Google’s and Mt. 
Sinai’s DeepPatient [62]. 

Identify subcohorts of interest by patient stratification 
We used the Plotviz tool [63, 64], built upon the high-performance computing platform at 

Indiana University, to cluster the P2 subset patients. Deterministic Annealing Pairwise Clustering 
(DAPWC) algorithm [65], which focuses on highlighting the datapoint difference in high 
dimensional data, Plotviz significantly reduced the computational time, performed dimensionality 
reduction and visualize the results in 3D. To determine the number of cluster parameters (k) in 
Plotviz, we applied Silhouette index [66] (Si) to select the best number of clusters. Si closed to 1 
implies appropriate clustering structure; meanwhile, Si closed to -1 implies inappropriate 
clustering structure, including too few and too many clusters. From multiple experiments, we 
choose k = 5 (Si = 0.793). 



We proposed two option to annotate the clusters. First, we found the significant clinotypes 
expressing in each cluster by the ANOVA test. Clinotypes returning significant average p-value 
(less than 0.05) could be used to annotate the clusters. Second, we found which clusters c would 
over-represent a specific disease D using hypergeometric distribution p-value computed as 

�
� Κ!

(Κ − τ)! τ!��
(Ν − Κ)!

(η − τ)! �(Ν − Κ) − (η − τ)�!
�

Ν!
(Ν − η)! η!

   (5)
min (Κ,η)

τ=κ

 

Where Ν (nu) is the number of patients in P2 subset, Κ (kappa) is the number of patients having 
disease D diagnosis, η is the size of cluster c and κ is the number of patients having disease D in 
cluster c. The less-than-0.05 p-value implies that cluster c significantly enriches disease D. 
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